Water and Environment Support

in the ENI Southern Neighbourhood region

Risque de sédimentation des réservoirs et mesures d'atténuation en faveur de la durabilité en Tunisie Activity No.: N-W-TN-2

Atelier de Consultation Nationale

18 Sep 2023, Hotel Golden Tulip El Mechtel, Tunis

Presented by: Dr. D. ZARRIS, WES Non – Key Expert

Terminology - Natural Water & Soil Retention Measure Environment Support Terminology - Natural Water & Soil Retention Measure Environment Support Southern Neighbourhood region

DEFINITION BY THE EUROPEAN UNION (WFD CIS Working Group Programme of Measures (WG PoM))

Natural Water & Soil Retention Measures (NWRM) are multi-functional measures that aim to protect and manage water resources and address water-related challenges by restoring or maintaining ecosystems as well as NATURAL FEATURES AND CHARACTERISTICS of water bodies using NATURAL MEANS AND PROCESSES. Their main focus is to enhance, as well as preserve, the water and soil retention capacity of aquifers, soil, and ecosystems with a view to improving their status. NWRM have the potential to provide multiple benefits, including the reduction of risk of floods and droughts, water quality improvement, groundwater recharge and habitat improvement. The application of NWRM supports green infrastructure, improves or preserves the quantitative status of surface water and groundwater bodies and can positively affect the chemical and ecological status of water bodies by restoring or enhancing natural functioning of ecosystems and the services they provide. The preserved or restored ecosystems can contribute both to climate change adaptation and mitigation.

Natural Water & Soil Retention Measures (NWSRMs)

- ✓ Retain water (runoff or river flows) beyond the existing capacity of systems, releasing it at a controlled rate, or infiltrating it to groundwater;
- ✓ Use the retention capacity of soils and of aquatic ecosystems to provide other environmental and well-being improvements, such as water quality, biodiversity, amenity value or resilience and adaptation to climate change impacts;
- ✓ Are usually applied at relatively 'small scale', in comparison to the size of the water catchment or territory in which they are implemented;
- ✓ Emulate a natural process, although are not always 'natural' features themselves (e.g. may need for civil engineering structures).

JRC SCIENTIFIC AND POLICY REPO

Evaluation of the effectiveness of Natural Water Retention Measures

Support to the EU Blu to Safeguard Europe' Waters

Peter Burek, Sarah Mubareka, Rod de Roo, Alessandra Bianchi, Claud Carlo Lavalle, Ine Vandecasteele

2012

Key World

The Key World is the world "Natural". What does this really mean?

- Option 1: Natural Systems are quite cheap although they do not have the same efficiency as "hard" solutions especially in high return period floods.
- Option 2: Principle "Design with Nature" and not "Design Against Nature". That means sustainable solutions that bring nature and biodiversity within our cities.
- Issue of scale. Small is beautiful ... but large is great? Perhaps, large is a total of smalls.

Pros & Cons

- Limit the amount of water that enters the local storm sewer.
- Reduce the potential for flooding and drainage problems.
- Reduce the quantity of pollutants entering the storm sewer system.
- Restore and recharge the groundwater system.
- Low maintenance: They are planted with beautiful, hardy plants that require little to no water.
- Planting of native species in rain gardens will attract birds, butterflies and other beneficial insects, such as dragonflies (dragonflies eat mosquitoes).
- The efficiency is getting low as the intensity of rainfall is increasing.
- As they need space for deploying, they may be more expensive in areas
 with high land values.

The simple Theory behind NWRMs

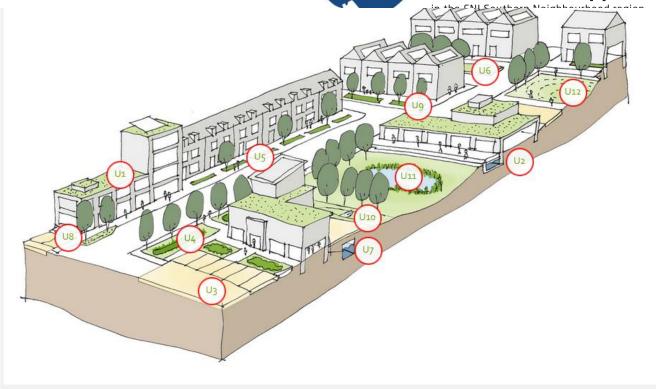
- Increase the concentration time in the catchment by contemporary storage, decrease of runoff peak.
- Increase the hydraulic roughness in the catchment, which is also increasing the concentration time.
- Store water in the catchment and release it slowly afterwards, the flood volume and runoff peak is also decreasing.
- Increase hydraulic roughness in the streams, flow velocity and kinetic energy goes down, reducing the risk of erosion or catastrophic flooding.
- Increase of flow depth, increase the frequency of less catastrophic or mild flooding.

Table 1. Illustrating the diversity of measures classified as NWRM¹

Туре	Class	Non-exhaustive list of examples
Direct modification in ecosystems	Hydro-morphology (Rivers, Lakes, Aquifers, connected wetlands)	Restoration and maintenance of rivers, lakes, aquifers and connected wetlands; Reconnection and restoration of floodplains and disconnected meanders, elimination of riverbank protection
	Agriculture	Restoration and maintenance of meadows, pastures, buffer strips and shelter belts; soil conservation practices (crop rotation, intercropping, conservation tillage), green cover, mulching
Change & adaptation in land-use & water management practice	Forestry and Pastures	Afforestation of upstream catchments; targeted planting for "catching" precipitation; Continuous cover forestry; maintenance of riparian buffers; urban forests; Land-use conversion for water quality improvements
	Urban development	Green roofs, rainwater harvesting, permeable paving, swales, soakaways, infiltration trenches, rain gardens, detention basins, retention ponds, urban channel restoration

CONSULTANTS

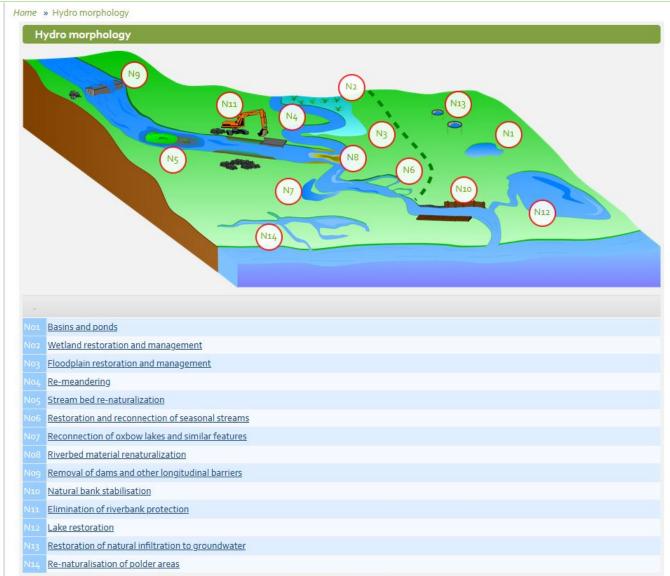
-30	
	Green Roofs
	Rainwater Harvesting
	Permeable Paving and other permeable surfaces
	Swales
	Channels and Rills
	Filter Strips
	Soakaways
	Infiltration Trenches
	Rain Gardens
	Detention / Infiltration Basins
	Retention Ponds
	Managed Aquifer Recharge


	Hydro morphology
N1	Basins and ponds
	Wetland
	Floodplain reconnection
	Re-meandering
	Revitalisation of flowing waters
	Temporary tributaries flow
	Hydraulic annexes
	Riverbed (alluvial mattress)
	Levelling of dams/ longitudinal barriers
	Natural bank stabilisation
	Elimination of riverbank protection
	Lakes
	Artificial groundwater recharge (AGR)
N14	Floodplain restoration (polder)

1s)

Water and Environment Support

Urban Drainage



Natural Water Retention Measures (NWRMs) Water and Environment Support in the ENI Southern Neighbourhood region

River Hydromorphology

bourhood region

Forestry, Natural Areas & Catchment Processes

- os Forest riparian buffers
- Maintenance of forest cover in headwater areas
- Afforestation of reservoir catchments
- Targeted planting for 'catching' precipitation
- Land use conversion
- 6 Continuous cover forestry
- 'Water sensitive' driving
- Appropriate design of roads and stream crossings
- Sediment capture ponds
- Coarse woody debris
- Urban forest parks
- Trees in Urban areas
- Peak flow control structure
- Overland flow areas in peatland forests

Natural Water Retention Measures (NWRMs) Water and Environment Support

Agriculture

