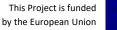
# Water and Environment Support

in the ENI Southern Neighbourhood region




#### **Activity: WES N-E-MO-2**

**Training on marine litter monitoring** 

#### Monitoring microlitter on the sea surface with manta trawling: experimental design and survey protocol

Thomais Vlachogianni | PhD. Environmental Chemist & Ecotoxicologist
Senior MIO-ECSDE Policy & Programme Officer
Senior WES Marine Litter Expert
Member of the MSFD Technical Group on Marine Litter
Member of the UNEP/MAP CORMON Group
WP Leader of Plastic Busters MPAs & Plastic Busters CAP









### **MICROLITTER STUDIES IN THE MEDITERRANEAN**

The Mediterranean Sea is one of the most studied regions in the world in terms of microplastic contamination

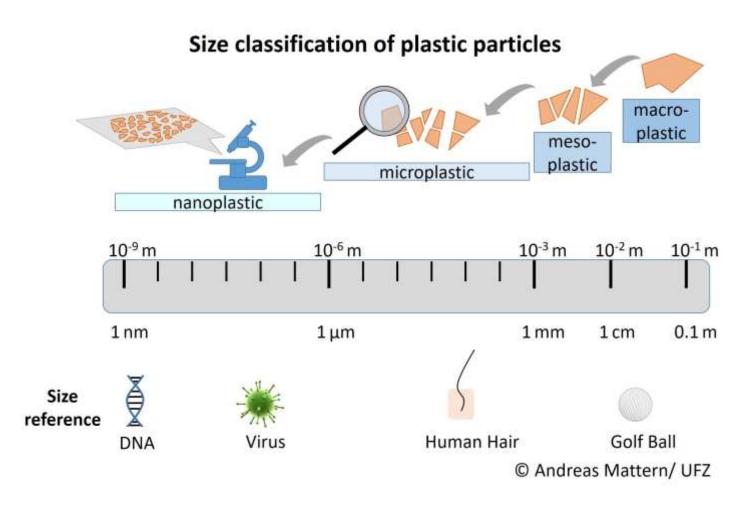


## **MICROPLASTICS: FINDING A CONSENSUS ON THE DEFINITION**

Thompson et al. (2004) initially coined the term microplastics to describe the accumulation of microscopic pieces of plastic in marine sediments and in the water column of European waters.

In 2009, Arthur et al., proposed an upper size limit to the initial term and microplastics where known as "plastic particles smaller than 5 mm". This definition was further refined in 2011, when Cole et al. (2011) distinguished microplastics, according to their origin, into primary (produced to be of microscopic dimensions) or secondary (resulting from degradation and fragmentation processes in the environment).

The Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP), defines microplastics as 'plastic particles <5 mm in diameter, which include particles in the nano-size range (1 nm).


- There is still no clear consensus on a definition that is extensive enough to encompass all necessary criteria to describe 'microplastics'. This technicality causes several methodological challenges.
- Regarding size, there is still no
  agreement on the upper and
  lower size limits to microplastics,
  even though the most used
  definition is the one proposed by
  Arthur et al.

> <u>https://doi.org/10.1016/j.marpolbul.2018.11.022</u>

# SIZE CLASSIFICATION OF PLASTIC PARTICLES

Microplastics are any synthetic solid particle or polymeric matrix, with regular or irregular shape and with size ranging from 1 µm to 5 mm, of either primary or secondary manufacturing origin, which are insoluble in water Source: Frias and Nash, 2019.





# **CLASSIFYING MICROPLASTICS BY SHAPE & COLOR**

| Microplastic<br>type | Definition                           | Potential sources                         |
|----------------------|--------------------------------------|-------------------------------------------|
| Fragment             | Hard, jagged plastic<br>particle     | Bottles; hard, sturdy plastics            |
| Line/fiber           | Thin or fibrous, straight<br>plastic | Fishing line/nets; clothing or textiles   |
| Pellet               | Hard, rounded plastic<br>particle    | Virgin resin pellets; facial<br>cleansers |
| Film                 | Thin plane of flimsy plastic         | Plastics bags, wrappers, or sheeting      |
| Foam                 | Lightweight, sponge-like<br>plastic  | Foam floats, Styrofoam, cushioning        |

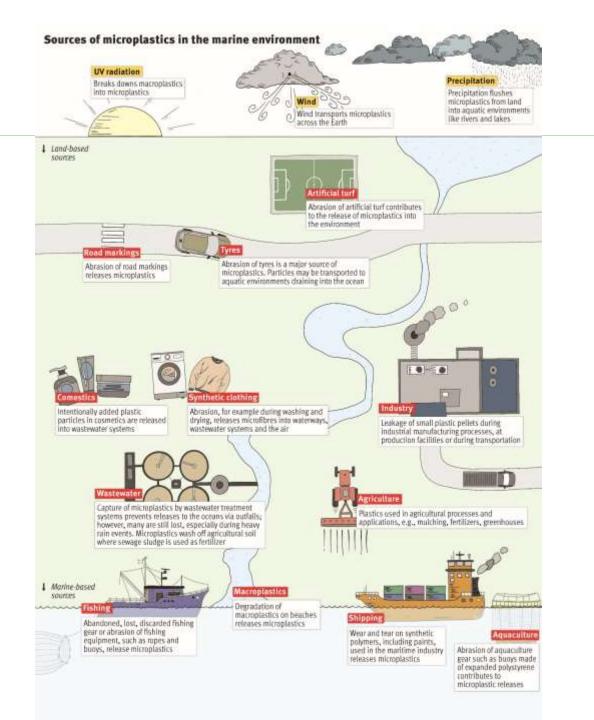
Microplastic colour is considered important, for studies concerning marine organisms, as some species are thought to potentially ingest microplastics based on a colour preference behaviour



# **SIZE IS IMPORTANT**

- Different sizes of plastic particles or larger plastic objects need different types of equipment to sample them in the ocean and different analytical techniques in the laboratory.
- Size also determines the likely impact on ocean life and human activities such as fisheries.



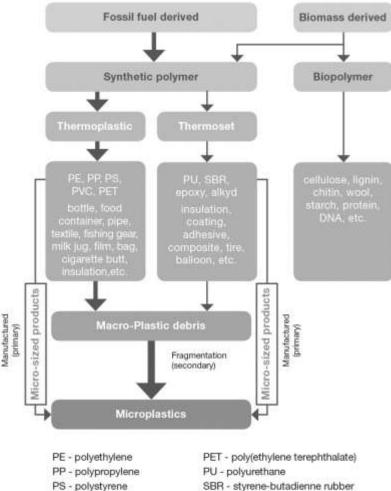

# **TYPES OF MICROPLASTICS**

#### **Primary microplastics**

manufactured for the purpose of being added to (or used in the production of) other products

#### **Secondary microplastics**

created by the fragmentation and degradation of macroplastics




### **MICROPLASTICS TERMS & DEFINITIONS IN THE RPMMM**

- Primary microplastics: tiny particles designed for direct commercial use (such as cosmetics, detergents and paints components), or for indirect use (such as pre-production pellets).
  - Secondary microplastics: the fraction of microplastics in the marine environment which results from the breakdown of larger plastic items into numerous tiny fragments due to mechanical forces and/or photochemical processes, as well as from other degradation sources such as water bottles, fibres in wastewater from washing clothes and particles of rubber lost from tyres due to normal wear.



### **MICROPLASTICS CLASSIFICATION OVERVIEW**



PVC - poly(vinyl chloride)

SBR - styrene-butadienne rubber

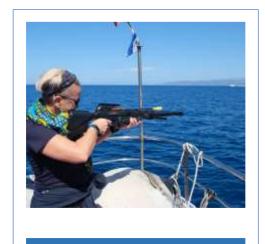


#### **MICROLITTER MONITORING APPROACHES**



**Beach sediments** 

<


>



Sea surface

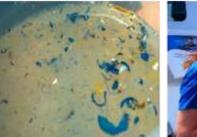


Seafloor sediments



Biota

#### **MICROLITTER STUDIES IN MEDITERRANEAN BEACH SEDIMENTS**


| Location                                       | Size             | Sampling                   |       |                            | Extraction                  |                    |                            |                  | Identification        | Reference                                     |                                |
|------------------------------------------------|------------------|----------------------------|-------|----------------------------|-----------------------------|--------------------|----------------------------|------------------|-----------------------|-----------------------------------------------|--------------------------------|
|                                                |                  | Beach zone                 | n     | Depth<br>(cm)              | Drying<br>duration/<br>Temp | Extraction process | Stirring<br>time/<br>speed | Settling<br>time | Repeat<br>extractions |                                               |                                |
| Slovenian coast                                | 250µm-5mm        | Entire beach               | 3     | 5                          | 24 h/60 °C                  | 1.2 kg/L<br>NaCl   | 2 min<br>manually          | 30 min           | 2                     | Visual (microscope)                           | Laglbauer et al., 2014         |
| Slovenian coast                                | 250 μm-5mm       | Sublittoral<br>zone        | 3     | ND                         | 24 h/60 °C                  | 1.2 kg/L<br>NaCl   | 2 min<br>manually          | 30 min           | 2                     | Visual (microscope)                           | Laglbauer et al., 2014         |
| North-western Adriatic<br>coast, Italy         | ≤5mm             | High tide mark             | 6     | 5                          | 48 h/50 °C                  | Optical            | -                          | -                | -                     | FTIR-ATR                                      | Munari et al., 2017            |
| Mediterranean<br>coastline, Morocco            | 1.25-<br>4.75 mm | Entire beach               | 3     | 5                          | 1 h/65 °C                   | Optical            | -                          | -                | -                     | -                                             | Alshawafi et al., 2017         |
| Northern coast of Crete isl.                   | ≥2mm             | Entire beach               | 12-18 | 10                         | -                           | Optical            | -                          | -                | -                     | -                                             | Karkanorachaki et al.,<br>2018 |
| Mediterranean Sea<br>(Esp, Fr, It, Gr, Tr, Is) | 0.3- 5mm         | High tide line             | 5     | 5                          | 48 h/60 °C                  | 1.2 kg/L<br>NaCl   | 2 min/ 900<br>rpm          | 8 h              | 3                     | Visual (microscope) and<br>Raman spectroscopy | Lots et al., 2017              |
| Northern Tunisian coast                        | ≥1mm             | ND                         | 3     | 2-3                        | air                         | 1.2 kg/L<br>NaCl   | 5 min<br>manually          | ND               | ND                    | FTIR-ATR                                      | Abidli et al., 2018            |
| Kea isl., Aegean<br>Sea                        | 1-2 mm           | Upper beach                | 3-4   | 3                          | ND                          | 1.2 kg/L<br>NaCl   | ND                         | ND               | ND                    | FTIR-ATR                                      | Kaberi et al., 2013            |
| Kea isl., Aegean<br>Sea                        | 2-4 mm           | Upper beach                | 3-4   | 3                          | ND                          | Optical            | -                          | -                | -                     | Visual and FTIR-ATR                           | Kaberi et al., 2013            |
| Samos isl., Greece                             | ≥1.2 μm          | Beach and sublittoral zone | 27    | 0-5,<br>5-10, 10-<br>15 cm | ND                          | 1.2 kg/L<br>NaCl   | ND                         | ND               | ND                    | ND                                            | De Ruijter et al., 2018        |

Source: Vlachogianni, et al., 2018. State-of-the-art methods to monitor marine litter and its impacts on biodiversity. Interreg Med Plastic Busters MPAs project.

### **MICROLITTER STUDIES IN THE MEDITERRANEAN SEA SURFACE**











| Location                                                           |                             |                                                                      | Sam                                           | pling                                                |                                             |                                            | Identification                                         | References                    |
|--------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------------------|-------------------------------|
|                                                                    | Compartment                 | Net                                                                  | Mesh size                                     | Mouth                                                | Vessel speed                                | Time                                       |                                                        |                               |
| North Western Mediterranean Sea Tuscan coast                       | Sea surface/Water<br>column | Surface samples:<br>Manta-net Vertical<br>hauls: WP2<br>plankton net | Manta trawl net:<br>330 μm WP2 net:<br>200 μm | Manta trawl: 0.5 ×<br>0.25 m WP2: 0.57<br>m diameter | Manta trawl: 2 – 3<br>knots WP2: 0<br>knots | Manta trawl: 20<br>min<br>WP2: up to 100 m | FTIR                                                   | Baini et al., 2018            |
| Western Mediterranean Sea PelagosSanctuary                         | Sea surface                 | Manta-net                                                            | 330 µm                                        | 0.5 × 0.25 m                                         | 3 – 4 knots                                 | 30 min                                     | FTIR                                                   | Fossi et al., 2017            |
| Western Mediterranean SeaGulf of Lion                              | Sea surface                 | Manta-net                                                            | 780 µm                                        | 0.5 x 0.15 m                                         | 2.5 knots                                   | 20 min                                     | Visual (microscope)                                    | Schmidt et al.,<br>2017       |
| Aegean-Levantine Sea, Turkish                                      | Sea surface                 | Manta-net                                                            | 333 µm                                        | 0.4 x 0.2 m                                          | -                                           | -                                          | FTIR                                                   | Güven et al.,<br>2017         |
| Aegean-Levantine Sea                                               | Sea surface                 | Manta-net                                                            | 333 µm                                        | 0.2 × 0.6 m                                          | 2 knots                                     | 15 min                                     | Visual (microscope)                                    | van der Hal et<br>al., 2017   |
| Western Mediterranean Sea (Ligurian Sea)                           | Sea surface                 | Neuston net                                                          | 200 µm                                        | 0.6 x 0.2 m                                          | 2.5 knots                                   | 60 min                                     | FTIR                                                   | Pedrotti et al.,<br>2016      |
| Western Mediterranean Sea and Adriatic Sea                         | Sea surface                 | Neuston net                                                          | 200 µm                                        | 1 × 0.5 m                                            | 1.5 – 2 knots                               | 5 min                                      | FTIR-ATR                                               | Suaria et al.,<br>2016        |
| Whole Mediterranean                                                | Sea surface                 | Manta-net                                                            | 333 µm                                        | 0.6 x 0.25 m                                         | 3.13 knots                                  | 15 - 30 min                                | Visual (microscope)                                    | Ruiz-Orejón et<br>al., 2016   |
| Adriatic Sea                                                       | Sea surface                 | Neuston net                                                          | 300 µm                                        | 0.6 × 0.15 m                                         | 3 knots                                     | 20 min                                     | Chemical analysis                                      | Gajšt et al., 2016            |
| Western Mediterranean Sea                                          | Sea surface                 | Neuston net                                                          | 200 µm                                        | 0.6 x 0.25 m                                         | 1.5 knots                                   | 20 min                                     | Visual (microscope)                                    | Fossi et al., 2016            |
| Aegean-Levantine Sea Turkey                                        | Sea surface                 | Manta-net                                                            | 333 µm                                        | 0.6 × 0.25 m                                         | 2 knots                                     | 20 min                                     | Visual (microscope)                                    | Gündoğdu and<br>Çevik, 2017   |
| Western Mediterranean Sea AsinaraNational Park<br>PelagosSanctuary | Sea surface                 | WP2                                                                  | 200 µm                                        | 57 cm diameter                                       | 0.772 m/s                                   | 20 min                                     | Visual (microscope)                                    | Panti et al., 2015            |
| Whole Mediterranean                                                | Sea surface                 | Neuston net                                                          | 200 µm                                        | 1.0 × 0.5 m                                          | 2 – 3 knots                                 | 15 min                                     | Visual (microscope)                                    | Cózar et al. <i>,</i><br>2015 |
| Western Mediterranean Sea                                          | Sea surface                 | Manta-net                                                            | 330 µm                                        | 0.6 × 0.15 m                                         | 1.4 m/s                                     | 45 - 90 min                                | Visual (microscope)                                    | Faure et al.,<br>2015         |
| Western Mediterranean Sea (Corsica)                                | Sea surface                 | WP2 0.2 mm                                                           | 200 µm                                        | 0.6 x 0.25 m                                         | 2.5 km/h                                    | 20 min                                     | Visual (microscope)                                    | Collignon et al.,<br>2014     |
| Western Mediterranean Sea (Sardinian coast)                        | Sea surface                 | Manta-net                                                            | 500 μm                                        | -                                                    | 2 knots                                     | 20 min                                     | Visual (microscope)                                    | de Lucia et al.,<br>2014      |
| Adriatic and Ionian Seas                                           | Sea surface                 | Manta-net                                                            | 330 µm.                                       | 0.6 × 0.24 m                                         | < 3 knots                                   | 30 min                                     | Visual<br>(stereomicroscope);<br>ATR-FTIR spectroscopy | Zeri et al., 2018             |

Source: Vlachogianni, et al., 2018. State-of-the-art methods to monitor marine litter and its impacts on biodiversity. Interreg Med Plastic Busters MPAs project.

# **INDICATIVE FLOATING MICROPLASTICS DENSITIES**

| Location                                                               | Habitat                     | Date       | Density                                                                                                  | References             |
|------------------------------------------------------------------------|-----------------------------|------------|----------------------------------------------------------------------------------------------------------|------------------------|
| North Western Mediterranean Sea Tuscan<br>coast                        | Sea surface/Water<br>column | 2013-2014  | Surface: 69,161.3 $\pm$ 83,243.9 items/km <sup>2</sup><br>Vertical: 0.16 $\pm$ 0.47 Items/m <sup>3</sup> | Baini et al., 2018     |
| Western Mediterranean Sea Pelagos<br>Sanctuary                         | Sea surface                 | 2014       | 82,000 ± 79,000 items/km <sup>2</sup>                                                                    | Fossi et al., 2017     |
| Western Mediterranean Sea (Ligurian Sea)                               | Sea surface                 | 2013       | 125,930 ± 132,485 Items/km <sup>2</sup> ± SD                                                             | Pedrotti et al., 2016  |
| Western Mediterranean Sea and Adriatic Sea                             | Sea surface                 | 2013       | 400,000 ± 740,000 items/km <sup>2</sup><br>1.00 ± 1.84 Items/m <sup>3</sup>                              | Suaria et al., 2016    |
| Adriatic Sea- Slovenian coastal waters                                 | Sea surface                 | 2014       | 472,000 ± 201,000 Items/km <sup>2</sup> ± SD                                                             | Gajšt et al., 2016     |
| Gulf of Trieste                                                        | Sea surface                 | 2014- 2015 | 444,182 ± 563,190 items/km <sup>2</sup>                                                                  | Zeri et al., 2018      |
| Western<br>Mediterranean Sea                                           | Sea surface                 | 2012       | 0.31 ± 1.17 Items/m3 ± SD                                                                                | Fossi et al., 2016     |
| Western Mediterranean Sea, Asinara<br>National Park, Pelagos Sanctuary | Sea surface                 | 2012–2013  | 0.17 ± 0.32 Items/m <sup>3</sup> ± SD                                                                    | Panti et al., 2015     |
| Whole Mediterranean                                                    | Sea surface                 | 2013       | 243,853 Items/km <sup>2</sup>                                                                            | Cózar et al., 2015     |
| Western Mediterranean Sea (Sardinian coast)                            | Sea surface                 | 2013       | 0.15 ± 0.11 Items/m <sup>3</sup>                                                                         | de Lucia et al., 2014  |
| Ligurian and Sardinian Sea                                             | Sea surface                 | 2011       | 0.62 ± 2.00 Items/m <sup>3</sup> ± SD                                                                    | Fossi et al. 2012      |
| Western<br>Mediterranean Sea                                           | Sea surface                 | 2010       | 116,000 Items/km <sup>2</sup>                                                                            | Collignon et al., 2012 |
| Archipelago of Zadar                                                   | Sea surface                 | 2015       | 127,135 ± 294,847 particles/km <sup>2</sup>                                                              | Palatinus et al., 2019 |

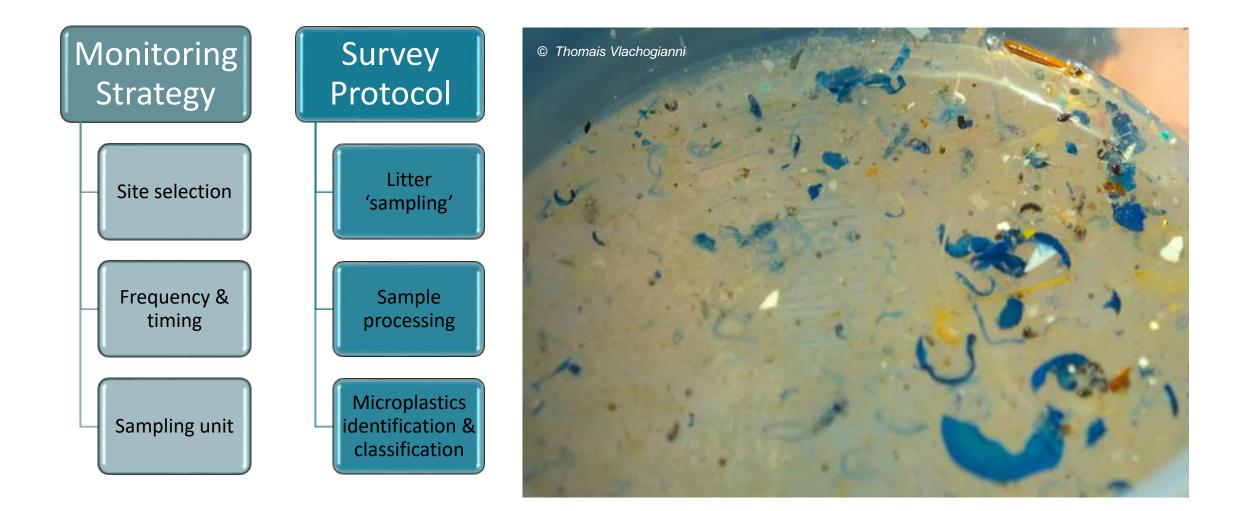
#### **MICROLITTER STUDIES IN MEDITERRANEAN SEAFLOOR SEDIMENTS**

| Location                     | Sampling                                                                                                                        | Depth     | Laboratory analysis                                                                        | References                     |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------|--------------------------------|
| 32"22.90 N 31"43.13<br>E     | 0 25 cm <sup>2</sup> Core sampling, 1-5mm                                                                                       | 1176-4848 | Density (NaCl) separation, visual counts, 4 categories (fibres, pellets, films, spherical) | Van cauwernberghe et al., 2013 |
| NW basin, canyons &<br>slope | Canyons/slopes/abyssal plain,<br>ROV/core sampling, 0.32-5mm                                                                    | 300-3500  | Density (NaCl) separation, visual counts, fibers & particles separation, FTIR analysis     | Woodall et al., 2014           |
| Eolian Islands               | Undisturbed sediment (5 cm<br>depth) collected by scientific scuba<br>divers, using wide mouth glass jars                       | 30        | Surface sediment, sieving, visual observation,<br>MSFD categories (5)                      | Fastelli et al., 2016          |
| Malta                        | 0.1-m2 van Veen<br>grab at eight sampling stations                                                                              | 4-22      | Density (NaCl) separation, visual counts, 3 categories (fibrous, rounded and irregular)    | Romeo et al., 2015             |
| Croatia                      | sediment collected by scientific<br>scuba divers, using wide mouth<br>glass jars in 10 sites. Three<br>replicates for each site | 3-15      | Density (NaCl) separation of sieved fractions,<br>MSFD categories (5)                      | Blăsković et al., 2017         |
| Balearic Islands             | Superficial core sampling (0-3.5<br>cm) with scuba diving, 1- 5 mm                                                              | 8-10 m    | Density (NaCl) separation of sieved fractions,<br>MSFD categories (5)                      | Alomar et al., 2016            |

Source: Vlachogianni, et al., 2018. State-of-the-art methods to monitor marine litter and its impacts on biodiversity. Interreg Med Plastic Busters MPAs project.

# **COMPOSITION OF FLOATING MICROPLASTICS**

The detected plastic types are diverse but some are predominant on the sea surface because of their widespread use and their buoyancy:


- poly(ethylene) (PE) frequent in food packaging (e.g. in films and bottle caps)
- poly(propylene) (PP), used as packaging material and plastic parts in various industries
- poly(amides) (PA) and poly(styrene) (PS)



# MONITORING MARINE MICROLITTER ON THE SEA SURFACE WITH MANTA TRAWLING



#### MARINE MACROLITTER MONITORING | KEY ELEMENTS



# **SITE SELECTION CRITERIA**



# High density areas (e.g. close to ports)



Other selected areas e.g. in estuaries, in the vicinity of cities, in local areas of touristic, recreational or commercial traffic





#### **FREQUENCY & TIMING OF THE SURVEYS**



#### **THE SAMPLING UNIT**

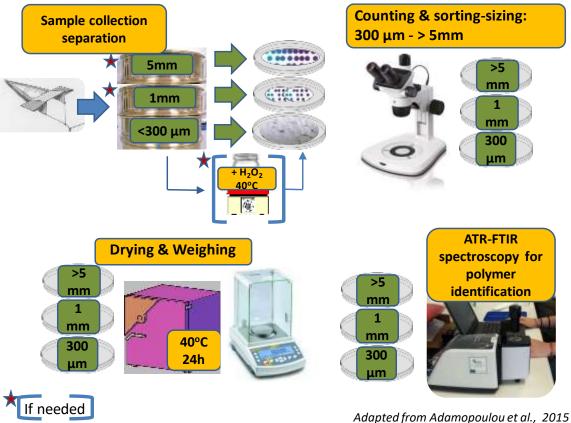


#### Manta trawl equipped with a flowmeter

Mouth opening: 60 x 15 cm Mesh size: 330 μm Sampling duration: 30 minutes Vessel speed: 1.5 – 2.5 knots

- The sampling should be conducted using small to medium-sized vessels in low wind conditions (0-2 Beauforts).
- All tows should be conducted from the ship's side and beyond the ships' wake.
- ✓ Both the starting and ending positions should be recorded with GPS, along with the track.

#### **THE SAMPLING PROCEDURE – STEP-BY-STEP**

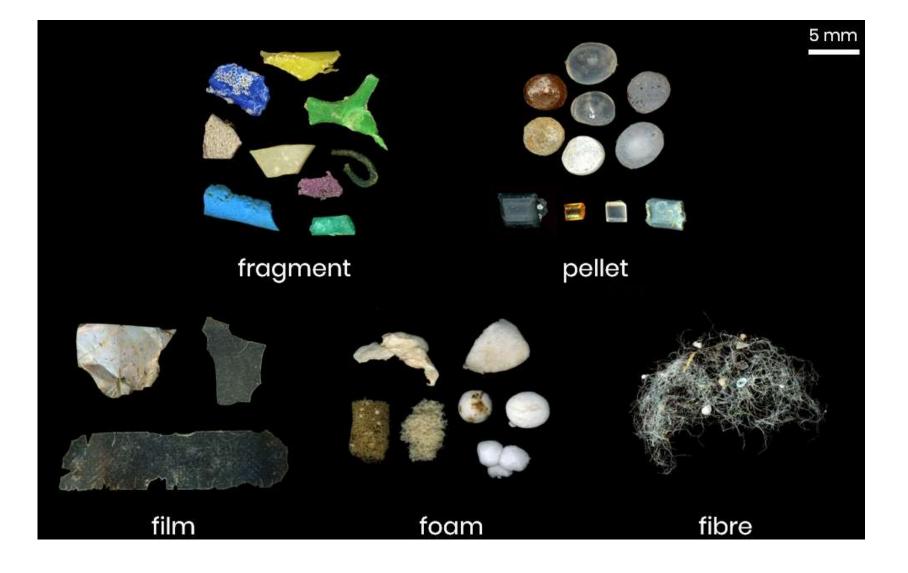



- ✓ The sample collected in the cod-end should be rinsed with seawater on a 300 μm metallic sieve and transferred to glass jars filled with seawater.
- ✓ Any natural debris items, such as leaves, twigs, seaweed, etc., should be rinsed separately above the sieve and removed from the sample.
- ✓ The samples should be **stored in 70% ethanol solutio**n for further analysis.

# **SAMPLE PROCESSING**

Microlitter is classified in:

- ✓ Large Microlitter LML (1mm-5mm)
- ✓ Small Microlitter SML (300µm 1mm)
- ✓ In case of samples poor in natural particles and organic material, transfer the sample into a petri dish and observe under a stereomicroscope. Measure the particles' longest dimension using an image analysis software, count and classify into the sizes classes. For the determination of weight, transfer the characterized MPs into three preweighted petri dishes according to size classes, dry at 40°C and weigh.
- ✓ In case of high natural organic matter content in the samples (LML or SML) a step of peroxide digestion precedes filtration: Add 15% hydrogen peroxide (H2O2) with 1:1 (sample:H2O2) volume ratio and boil on a hot plate (approx.40°C) until the digestion is complete (no natural organic material should be visible). Collect the digested material with deionised water and continue with filtration, drying and mass determination.




# **SAMPLE ANALYSIS**

- Microplastics sorted, counted and characterized by type on the basis of the following categories: pellet, fragment (granule, flake), fibre, film, filaments, microbeads, foam (expanded polystyrene-PS), in line with the MSFD TGML guidelines.
- The most common colours of microplastics identified are the following: black, blue, white, transparent, red, green, multicolour, other.
- ✓ For the identification of the **polymer type** it is recommended to use an ATR-FTIR spectrometer or Raman spectroscopy or Pyrolysis-Gas chromatographymass spectroscopy (Py-GCMS). FT-IR spectroscopy is mostly used in microplastic studies and in particular ATR-FTIR is considered fast, low cost and adequate for analyzing particles >300 µm, in size like the ones collected with manta nets.



### **MICROPLASTICS SORTED BY TYPE**



# **MICROPLASTICS – REPORTING UNITS**

Microlitter counts (N) are reported as follows:

- N per km<sup>2</sup> or N per m<sup>2</sup>, based on the start - end transect coordinates and the dimensions of the manta net mouth.
- N per Km<sup>3</sup> or N per m<sup>3</sup>, based on flow meter indication and relevant formula.

Microlitter mass is reported as follows:

- g per km<sup>2</sup> or g per m<sup>2</sup>
- g per Km<sup>3</sup> or g per m<sup>3</sup>



#### **EQUIPMENT NEEDED**

#### Sampling equipment

- Manta net with wings and cod end (mesh size: 330 μm)
- Oceanographic flowmeter
- Submersible water pump with a hose (for rinsing the net) or other equipment for net rinsing
- GPS
- Glass jars with caps or plastic bottles (500 ml) (one or more per each sample; when on the sea is a lot of sea grass, than you need 2 - 3 plastic bottles per sample)
- Sample container cool box
- Screw driver
- Sieve (max 0.3 mm mesh size; preferable with smaller mesh size)
- Large bowl or washbasin (to prevent spillage of sample when emptying cod-end; 5 l <)</p>
- Tap/fresh water source (tap/hose/squirt bottle)
- Squirt bottles2 x (one for water; one for alcohol)
- Tweezers (longer)
- Metal spoon
- Funnel (Ø 20 cm)
- Latex gloves without powder
- ▶ 70 % ethanol

#### Sample separation equipment

- Stereomicroscope (min. 80x zoom; recommended also: transmission light with dark field, polarisation contrast and ring light)
- Object glasses (marked number of a sample, date of analysis)
- Micro tweezer and tweezer
- Glass petri dishes
- Lab coat
- 70 % ethanol
- 3 Sieves with mesh sizes: 5mm; 1mm; 0.3 mm or smaller
- Squirt bottle 2x (one for distilled water; one for alcohol)
- Latex gloves without powder
- Filtered water or distilled water
- Analytical laboratory scale
- Multiwell plate provided by NIC for storing the microlitter particles

# **MICROPLASTICS – WHAT DO WE KNOW?**

- A lot is already known about microplastics, and more knowledge is being acquired, but some of the evidence remains uncertain and it is by its nature, complex (for instance, differences in size, shape, chemical additives, concentrations, measurements, fates, unknowns, human factors, actions).
- There is a fair knowledge of microplastics concentrations for freshwaters and the ocean surface, but little is known about concentrations and implications of microparticles below the ocean surface.
- Little is known with respect to the human health risks of microparticles; we have no evidence of widespread risk to human health from nanoparticles at present.
- Most microplastics go in and out of most organisms, and as with many chemicals, 'the poison is in the dose'. Most effect studies are performed using concentrations that are much higher than those currently reported in the environment, or using very small microplastics for which limited exposure data exists, or using spherical ones which are not representative of real-world types of particles, or using relatively short exposure times. Currently, it is not known to what extent these conditions apply to the natural environment. This limits the reliability of the risk assessments.





 $\langle -$  - - -  $\langle \rangle$ 

## **KNOWLEDGE GAPS AND RESEARCH NEEDS**

- Despite a growing number of papers, knowledge is still lacking to fully understand the distribution and concentration and chemical composition of microplastics in the Mediterranean Sea
- The different studies are uneasy to compare because of the heterogeneity of the Mediterranean Sea environment (hydrodynamic features, seasonality) and the variety of methodologies used (e.g. sampling, microplastic extraction, analysis, size classes considered, concentration units)
- Lack of quality assurance/quality control (QA/QC) instruments. No organisations todate offer proficiency training or testing in microplastics samples processing.



#### DATA GAPS

#### ANALYTICAL METHODS RESEARCH NEEDS

Water and Environment Support in the ENI Southern Neighbourhood region

# Thank you for your attention!

www.wes-med.eu

Conservation of the local distance of the lo

V