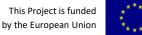
Water and Environment Support

in the ENI Southern Neighbourhood region


RE-2-REG

Regional training on microplastics

Amounts, types, sources and effects of plastics and microplastics in the Mediterranean marine environment Overview of microplastics monitoring approaches & knowledge gaps and research needs

Thomais Vlachogianni | PhD. Environmental Chemist & Ecotoxicologist Senior MIO-ECSDE Policy & Programme Officer, WES Marine Litter Expert

MARINE LITTER & MARINE PLASTIC POLLUTION IN THE MEDITERRANEAN

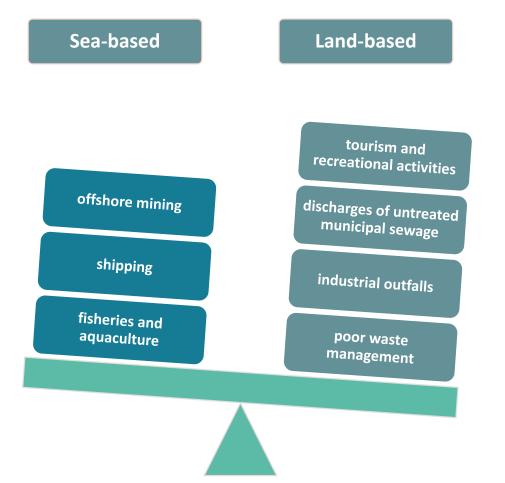
The Mediterranean Sea is one of the most affected areas by marine litter worldwide!

Port of Izmir, Turkey



Athens Marina, Greece

Tangier, Morocco


Milazzo, Italy

2

MARINE LITTER & MARINE PLASTIC POLLUTION SOURCES

- Assessing the relative importance of the different sources is challenging given that a considerable percentage of litter items cannot be attributed to a specific source.
- Beach litter research results are biased towards reflecting marine litter inputs from tourism and recreational activities as most beach litter surveys are carried out in tourism destinations.
 - The origin (transboundary effect) of marine litter is difficult to be determined.

The riverine inputs of marine litter are substantial.

It has been calculated that total annual plastic input in the Mediterranean basin is equal to 100,000 tons, and of these 50% originates from various land-based sources, 30% from rivers and 20% is from sea-based sources (Cincinelli et al., 2019)

MARINE LITTER IMPACTS ON MARINE SPECIES

663 marine species worldwide have been reported to have encountered marine litter

A 40 % increase of affected species in the last years has been reported

~ 15 % of the species affected through entanglement and ingestion are included in the IUCN Red List of Threatened Species

Photo: Thomais Vlachogianni

MARINE LITTER IMPACTS

- Uncertainties remain regarding the extent of harm caused to marine species by ingestion of microplastics and their exposure to hazardous chemicals leaching from or adsorbed on microplastics.
- Currently there is no evidence to support or refute potential bio-magnification of particles or associated chemicals.
- Basic toxicological data on the consumption of microplastics and nanoplastics by humans for a food risk safety assessment are lacking.
- Measuring the full economic cost of marine litter e.g. including the inhibition of the proper functioning of marine ecosystems is not possible.

Stomach contents of sea turtles that were dissected at the Talamone Sea Turtles Rescue Centre located in south Tuscany SOCIOECONOMIC IMPLICATIONS OF MARINE PLASTIC POLLUTION

Understanding the socio-economic implications of marine litter IN THE ADRIATIC-IONIAN MACROREGION

EXAMPLE OF THE DIRECT & INDIRECT COSTS OF MARINE PLASTIC POLLUTION

- For the fisheries sector the average annual cost of marine litter per vessel reaches € 5,400 (cost of repairs of damages, loss of revenue due to the smaller catch, loss of time spent on clearing and repairing nets, etc.). Given this, the total losses to the fisheries sector in the Adriatic-Ionian macroregion were calculated to be € 18.19 million per year, which represents one third of the marine litter costs to the EU fishing fleet.
- On average, the annual direct and indirect marine litter related costs for the aquaculture sector were assessed to be € 3,200 per aquaculture farm unit.
- The total annual cost of managing marine litter reported by 38 harbours and marinas in the Adriatic-Ionian macroregion was € 323,500 with an average annual cost of € 8,500 per harbour.
- The average annual amount per tourism related business of varying size and type was calculated to be € 5,700 per year, which can be considered as a substantial expense.
- The total cost of removing beach litter reported by the 32 municipalities was € 6,724,530 per year, with an average of € 217,000 per year per municipality. On average, the municipalities spent some 5% of their budget for marine litter cleanup operations.

8

MARINE LITTER COMPOSITION

- Plastics are ubiquitous in the coastal and marine environment accounting for some **70-90%** of all litter items found. Leakage' of plastics into the ocean can occur at all stages of the production-use-disposal cycle.
- A large amount of litter items found in the Mediterranean are **single-use plastic items**.
- Fishing and aquaculture related items account for some 37.5% of total items recorded in certain areas of the Mediterranean (Vlachogianni et al., 2018).
- There are no reliable estimates of the microplastics quantities entering the marine environment.
- Microplastics greatly outnumber large plastic items in marine systems. Even if all releases of plastic to the environment were to cease immediately, the number of microplastics in the ocean would be expected to continue to increase as a result of continuing fragmentation.

MICROLITTER STUDIES IN THE MEDITERRANEAN

The Mediterranean Sea is one of the most studied regions in the world in terms of microplastic contamination

MICROLITTER MONITORING APPROACHES

Beach sediments

Sea surface

Seafloor sediments

Biota

MICROLITTER STUDIES IN MEDITERRANEAN BEACH SEDIMENTS

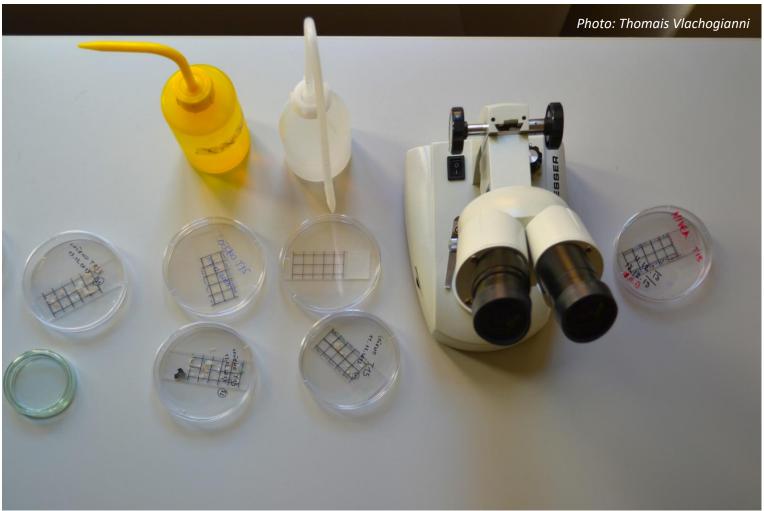
Location	Size	Sampling			Extraction					Identification	Reference
		Beach zone	n	Depth (cm)	Drying duration/ Temp	Extraction process	Stirring time/ speed	Settling time	Repeat extractions		
Slovenian coast	250µm-5mm	Entire beach	3	5	24 h/60 °C	1.2 kg/L NaCl	2 min manually	30 min	2	Visual (microscope)	Laglbauer et al., 2014
Slovenian coast	250 μm-5mm	Sublittoral zone	3	ND	24 h/60 °C	1.2 kg/L NaCl	2 min manually	30 min	2	Visual (microscope)	Laglbauer et al., 2014
North-western Adriatic coast, Italy	≤5mm	High tide mark	6	5	48 h/50 °C	Optical	-	-	-	FTIR-ATR	Munari et al., 2017
Mediterranean coastline, Morocco	1.25- 4.75 mm	Entire beach	3	5	1 h/65 °C	Optical	-	-	-	-	Alshawafi et al., 2017
Northern coast of Crete isl.	≥2mm	Entire beach	12-18	10	-	Optical	-	-	-	-	Karkanorachaki et al., 2018
Mediterranean Sea (Esp, Fr, It, Gr, Tr, Is)	0.3- 5mm	High tide line	5	5	48 h/60 °C	1.2 kg/L NaCl	2 min/ 900 rpm	8 h	3	Visual (microscope) and Raman spectroscopy	Lots et al., 2017
Northern Tunisian coast	≥1mm	ND	3	2-3	air	1.2 kg/L NaCl	5 min manually	ND	ND	FTIR-ATR	Abidli et al., 2018
Kea isl., Aegean Sea	1-2 mm	Upper beach	3-4	3	ND	1.2 kg/L NaCl	ND	ND	ND	FTIR-ATR	Kaberi et al., 2013
Kea isl., Aegean Sea	2-4 mm	Upper beach	3-4	3	ND	Optical	-	-	-	Visual and FTIR-ATR	Kaberi et al., 2013
Samos isl., Greece	≥1.2 μm	Beach and sublittoral zone	27	0-5, 5-10, 10- 15 cm	ND	1.2 kg/L NaCl	ND	ND	ND	ND	De Ruijter et al., 2018

Source: Vlachogianni, et al., 2018. State-of-the-art methods to monitor marine litter and its impacts on biodiversity. Interreg Med Plastic Busters MPAs project.

MICROLITTER STUDIES IN THE MEDITERRANEAN SEA SURFACE

Location			Identification	References				
	Compartment	Net	Mesh size	Mouth	Vessel speed	Time		
North Western Mediterranean Sea Tuscan coast	Sea surface/Water column	Surface samples: Manta-net Vertical hauls: WP2 plankton net	Manta trawl net: 330 μm WP2 net: 200 μm	Manta trawl: 0.5 × 0.25 m WP2: 0.57 m diameter	Manta trawl: 2 – 3 knots WP2: 0 knots	Manta trawl: 20 min WP2: up to 100 m	FTIR	Baini et al., 2018
Western Mediterranean Sea PelagosSanctuary	Sea surface	Manta-net	330 µm	0.5 × 0.25 m	3 – 4 knots	30 min	FTIR	Fossi et al., 2017
Western Mediterranean SeaGulf of Lion	Sea surface	Manta-net	780 µm	0.5 x 0.15 m	2.5 knots	20 min	Visual (microscope)	Schmidt et al., 2017
Aegean-Levantine Sea, Turkish	Sea surface	Manta-net	333 µm	0.4 x 0.2 m	-	-	FTIR	Güven et al., 2017
Aegean-Levantine Sea	Sea surface	Manta-net	333 µm	0.2 × 0.6 m	2 knots	15 min	Visual (microscope)	van der Hal et al., 2017
Western Mediterranean Sea (Ligurian Sea)	Sea surface	Neuston net	200 µm	0.6 x 0.2 m	2.5 knots	60 min	FTIR	Pedrotti et al., 2016
Western Mediterranean Sea and Adriatic Sea	Sea surface	Neuston net	200 µm	1 × 0.5 m	1.5 – 2 knots	5 min	FTIR-ATR	Suaria et al., 2016
Whole Mediterranean	Sea surface	Manta-net	333 µm	0.6 x 0.25 m	3.13 knots	15 - 30 min	Visual (microscope)	Ruiz-Orejón et al., 2016
Adriatic Sea	Sea surface	Neuston net	300 µm	0.6 × 0.15 m	3 knots	20 min	Chemical analysis	Gajšt et al., 2016
Western Mediterranean Sea	Sea surface	Neuston net	200 µm	0.6 x 0.25 m	1.5 knots	20 min	Visual (microscope)	Fossi et al., 2016
Aegean-Levantine Sea Turkey	Sea surface	Manta-net	333 µm	0.6 × 0.25 m	2 knots	20 min	Visual (microscope)	Gündoğdu and Çevik, 2017
Western Mediterranean Sea AsinaraNational Park PelagosSanctuary	Sea surface	WP2	200 µm	57 cm diameter	0.772 m/s	20 min	Visual (microscope)	Panti et al., 2015
Whole Mediterranean	Sea surface	Neuston net	200 µm	1.0 × 0.5 m	2 – 3 knots	15 min	Visual (microscope)	Cózar et al. <i>,</i> 2015
Western Mediterranean Sea	Sea surface	Manta-net	330 µm	0.6 × 0.15 m	1.4 m/s	45 - 90 min	Visual (microscope)	Faure et al., 2015
Western Mediterranean Sea (Corsica)	Sea surface	WP2 0.2 mm	200 µm	0.6 x 0.25 m	2.5 km/h	20 min	Visual (microscope)	Collignon et al., 2014
Western Mediterranean Sea (Sardinian coast)	Sea surface	Manta-net	500 μm	-	2 knots	20 min	Visual (microscope)	de Lucia et al., 2014
Adriatic and Ionian Seas	Sea surface	Manta-net	330 µm.	0.6 × 0.24 m	< 3 knots	30 min	Visual (stereomicroscope); ATR-FTIR spectroscopy	Zeri et al., 2018

Source: Vlachogianni, et al., 2018. State-of-the-art methods to monitor marine litter and its impacts on biodiversity. Interreg Med Plastic Busters MPAs project.

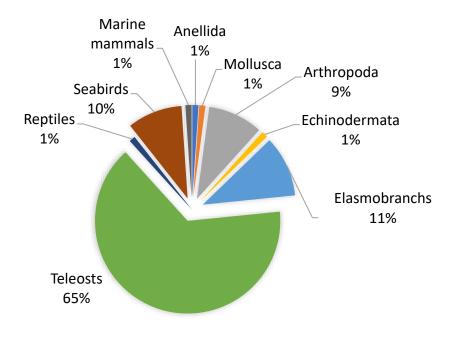

INDICATIVE FLOATING MICROPLASTICS DENSITIES

Location	Habitat	Date	Density	References
North Western Mediterranean Sea Tuscan coast	Sea surface/Water column	2013-2014	Surface: 69,161.3 \pm 83,243.9 items/km ² Vertical: 0.16 \pm 0.47 Items/m ³	Baini et al., 2018
Western Mediterranean Sea Pelagos Sanctuary	Sea surface	2014	82,000 ± 79,000 items/km ²	Fossi et al., 2017
Western Mediterranean Sea (Ligurian Sea)	Sea surface	2013	125,930 ± 132,485 Items/km ² ± SD	Pedrotti et al., 2016
Western Mediterranean Sea and Adriatic Sea	Sea surface	2013	400,000 ± 740,000 items/km ² 1.00 ± 1.84 Items/m ³	Suaria et al., 2016
Adriatic Sea- Slovenian coastal waters	Sea surface	2014	472,000 ± 201,000 Items/km ² ± SD	Gajšt et al., 2016
Gulf of Trieste	Sea surface	2014- 2015	444,182 ± 563,190 items/km ²	Zeri et al., 2018
Western Mediterranean Sea	Sea surface	2012	0.31 ± 1.17 Items/m3 ± SD	Fossi et al., 2016
Western Mediterranean Sea, Asinara National Park, Pelagos Sanctuary	Sea surface	2012–2013	0.17 ± 0.32 Items/m ³ ± SD	Panti et al., 2015
Whole Mediterranean	Sea surface	2013	243,853 Items/km ²	Cózar et al., 2015
Western Mediterranean Sea (Sardinian coast)	Sea surface	2013	0.15 ± 0.11 Items/m ³	de Lucia et al., 2014
Ligurian and Sardinian Sea	Sea surface	2011	0.62 ± 2.00 Items/m ³ ± SD	Fossi et al. 2012
Western Mediterranean Sea	Sea surface	2010	116,000 Items/km ²	Collignon et al., 2012
Archipelago of Zadar	Sea surface	2015	127,135 ± 294,847 particles/km ²	Palatinus et al., 2019

COMPOSITION OF FLOATING MICROPLASTICS

The detected plastic types are diverse but some are predominant on the sea surface because of their widespread use and their buoyancy:

- poly(ethylene) (PE) frequent in food packaging (e.g. in films and bottle caps)
- poly(propylene) (PP), used as packaging material and plastic parts in various industries
- poly(amides) (PA) and poly(styrene) (PS)



MICROLITTER STUDIES IN MEDITERRANEAN SEAFLOOR SEDIMENTS

Location	Sampling	Depth	Laboratory analysis	References
32"22.90 N 31"43.130 E) 25 cm ² Core sampling, 1-5mm	1176-4848	Density (NaCl) separation, visual counts, 4 categories (fibres, pellets, films, spherical)	Van cauwernberghe et al., 2013
NW basin, canyons & slope	Canyons/slopes/abyssal plain, ROV/core sampling, 0.32-5mm	300-3500	Density (NaCl) separation, visual counts, fibers & particles separation, FTIR analysis	Woodall et al., 2014
Eolian Islands	Undisturbed sediment (5 cm depth) collected by scientific scuba divers, using wide mouth glass jars	30	Surface sediment, sieving, visual observation, MSFD categories (5)	Fastelli et al., 2016
Malta	0.1-m2 van Veen grab at eight sampling stations	4-22	Density (NaCl) separation, visual counts, 3 categories (fibrous, rounded and irregular)	Romeo et al., 2015
Croatia	sediment collected by scientific scuba divers, using wide mouth glass jars in 10 sites. Three replicates for each site	3-15	Density (NaCl) separation of sieved fractions, MSFD categories (5)	Blăsković et al., 2017
Balearic Islands	Superficial core sampling (0-3.5 cm) with scuba diving, 1- 5 mm	8-10 m	Density (NaCl) separation of sieved fractions, MSFD categories (5)	Alomar et al., 2016

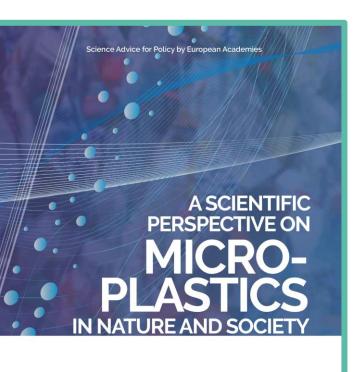
Source: Vlachogianni, et al., 2018. State-of-the-art methods to monitor marine litter and its impacts on biodiversity. Interreg Med Plastic Busters MPAs project.

PERCENTAGE OF SPECIES INVESTIGATED AMONG DIFFERENT TAXA FOR MARINE LITTER INGESTION IN THE MEDITERRANEAN SEA

<

KNOWLEDGE GAPS AND RESEARCH NEEDS

- Despite a growing number of papers, knowledge is still lacking to fully understand the distribution and concentration and chemical composition of microplastics in the Mediterranean Sea
- The different studies are uneasy to compare because of the heterogeneity of the Mediterranean Sea environment (hydrodynamic features, seasonality) and the variety of methodologies used (e.g. sampling, microplastic extraction, analysis, size classes considered, concentration units)
- Lack of quality assurance/quality control (QA/QC) instruments. No organisations todate offer proficiency training or testing in microplastics samples processing.



DATA GAPS

ANALYTICAL METHODS RESEARCH NEEDS

MICROPLASTICS – WHAT DO WE KNOW?

- A lot is already known about microplastics, and more knowledge is being acquired, but some of the evidence remains uncertain and it is by its nature, complex (for instance, differences in size, shape, chemical additives, concentrations, measurements, fates, unknowns, human factors, actions).
- There is a fair knowledge of microplastics concentrations for freshwaters and the ocean surface, but little is known about concentrations and implications of microparticles below the ocean surface.
- Little is known with respect to the human health risks of microparticles; we have no evidence of widespread risk to human health from nanoparticles at present.
- Most microplastics go in and out of most organisms, and as with many chemicals, 'the poison is in the dose'. Most effect studies are performed using concentrations that are much higher than those currently reported in the environment, or using very small microplastics for which limited exposure data exists, or using spherical ones which are not representative of real-world types of particles, or using relatively short exposure times. Currently, it is not known to what extent these conditions apply to the natural environment. This limits the reliability of the risk assessments.

Water and Environment Support in the ENI Southern Neighbourhood region

Thank you for your attention!

www.wes-med.eu

Constanting of the

1